
Benchmarking Matrix
Operations Optimizations

Afnan Alabdulwahab | Michael Jerge

CS6501: GPU Architectures

https://github.com/mmjerge/cudatorch

https://github.com/mmjerge/cudatorch

AGENDA

01 Introduction

02 Background &
Motivation

03 Experimental Setup

04 Results

05 Artifact Overview

06 Final Report Plan &
Contributions

07 Conclusion &
Questions

Introduction
01

● Fundamental to AI
● GPUs leverage parallel cores for speed
● 70 - 90% of AI computation time

● Reduces training time
● Lowers computing cost
● Enables larger models

● Algorithmic improvements
● Hardware acceleration
● Precision reduction
● Sparsity exploitation

● Finds bottlenecks
● Measures GPU utilization
● Guides hardware-specific tuning
● Ensures accuracy

Core Why Optimize

ProfilingOptimization Methods

Background & Motivation
02

● Multihead attention is a fundamental mechanism in transformer architectures but introduces significant computational
bottlenecks

● The mechanism requires multiple intensive matrix operations working in parallel
● Key operations (MatMul, Transpose, Softmax) consume substantial computational resources
● These operations scale poorly with increasing model size and sequence length

Current Limitations 6

Expensive Operations

● Matrix Multiplication (MatMul): O(n³) complexity in naïve implementations; dominates computation time
● Transpose: Memory access patterns become non-contiguous, reducing cache efficiency
● Softmax: Requires element-wise exponential calculations and normalization across dimensions
● Combined operations create memory bandwidth constraints and synchronization overhead

Current Optimization Landscape

● cuBLAS: NVIDIA's optimized BLAS library provides efficient matrix operations but has limitations for specialized patterns in
attention

● CUTLASS: Template library enabling custom matrix operation implementations
● Tensor Cores: Hardware acceleration for specific precision formats (FP16, BF16, INT8)
● Despite these tools, optimizing the entire attention mechanism remains challenging due to the interdependencies between

operations

Experimental Setup
03

Matrix Transpose Setup 8

GPU Architectures: NVIDIA GeForce RTX 2080 Ti, NVIDIA A100-PCIe-40GB, (H100 pending)
Matrix Dimensions: 32×32 (S), 1024×1024 (M), 8192×8192 (L), 1024×2048 (Non-square)

Implementations Benchmarked
● Naive: Direct element-by-element copy with global memory

access
● Shared Memory: 32×32 tiles with padding to avoid bank

conflicts
● Swizzled: Shared memory with index transformations to

eliminate conflicts
● Vectorized: Using float4 for coalesced memory access (4×

wider bandwidth)
● WarpShuffle: Direct register-to-register transfers using

__shfl_sync
Library-based:

● cuBLAS: NVIDIA's optimized SGEAM operation
● CuTe: NVIDIA's CUDA Template Library implementations

(Naive, Shared, Swizzled)
Each kernel is timed using cudaEventRecord()

Performance Metrics
● Kernel execution time (ms)
● Memory throughput (GB/s)

○ Transpose is memory-bound operation (not compute-bound), with performance limited by memory bandwidth
● Percentage of theoretical bandwidth achieved

Verification
● Element-wise comparison with CPU reference implementation
● Complete verification for small/medium matrices
● Statistical sampling with 100+ random points for large matrices

(8192×8192)
● All implementations successfully passed verification tests

Matrix Multiplication Setup 9

GPU Architectures: NVIDIA GeForce RTX 2080 Ti, NVIDIA A100-PCIe-40GB, (H100 pending)
Matrix Dimensions: 32×32 (S), 1024×1024 (M), 8192×8192 (L), 1024×2048 (Non-square)

Implementations Benchmarked
● Custom Kernels:

○ Naive Implementation
○ Shared Memory Optimization
○ Tensor Cores Implementation

● Library-based:
○ cuBLAS
○ CUTLASS
○ cuSPARSE (Sparse Matrix Multiplication)

Performance Metrics
● Execution Time (milliseconds)
● Throughput (GFLOPs)
● Computational Efficiency
● Memory Bandwidth Utilization
● Density Impact (for Sparse Matrices)

Verification
Numerical Accuracy Checking
● Full Verification (Small Matrices)
● Partial Verification (Large Matrices)

○ Random Sampling Technique
○ Configurable Sample Count

● Tolerance Levels
○ Standard Implementations: ε = 1e-2
○ Tensor Core Implementations: ε = 1e-1

Results
04

Matrix Transpose Performance: Implementation Comparison & Execution Time 11

● Vectorized implementation dominates performance (620-720 GB/s), achieving ~6× speedup over naive approach
● A100 outperforms RTX 2080 Ti by 15-50% across most implementations
● WarpShuffle underperforms expectations despite direct register transfers, likely due to warp synchronization

overhead and reduced parallelism compared to other approaches

Performance Scaling: Medium vs Large Matrices 12

● A100 advantage widens at larger matrix sizes (up to 1800 GB/s for Vectorized implementation)
● Vectorized implementation shows the most dramatic scaling improvement (~3× from medium to large)
● cuBLAS performance becomes more competitive with CUDA Template Library (CuTe) variants at larger sizes

Implementation Scaling Behavior: RTX 2080 Ti vs A100 13

● Vectorized implementation demonstrates superior scaling, reaching 1400 GB/s (RTX 2080 Ti) and 1800 GB/s (A100) with largest matrices
● All implementations show improved throughput as matrix size increases, but with different scaling patterns
● The cuBLAS implementation dips at medium sizes and then climbs significantly for the largest matrices.

○ This suggests NVIDIA's library might use different algorithms based on matrix size.
● The poor performance of WarpShuffle shows that register-based transfers aren't efficient for matrix transpose, likely due to thread

synchronization overhead
● The performance dips around 10^6 elements (1024×1024) might indicate cache boundary effects or memory access pattern changes

Implementation Efficiency: Speedup over Naive & Bandwidth Utilization 14

Speedup Findings:
● The Vectorized implementation achieves the most dramatic speedup: ~8.3× faster than naive on RTX 2080 Ti and ~7.9× on A100
● CuTe_Shared and CuTe_Swizzled both show excellent performance (7.2× and 6.9× speedups on RTX 2080 Ti)

Bandwidth Utilization:
● The A100 Vectorized implementation reaches ~120% of theoretical bandwidth utilization for large matrices
● cuBLAS (yellow points) shows relatively good bandwidth utilization
● Some implementations achieve >100% theoretical bandwidth utilization through effective cache usage
● Clear correlation between bandwidth utilization and achieved throughput
● Memory access pattern optimizations directly translate to performance improvements

Matrix Multiplication Execution Time 15

Matrix Multiplication Throughput 16

GPU Comparison for
Matrix Multiplication

17

● Detailed throughput comparison between NVIDIA A100 and
RTX 2080 Ti

● Multiple matrix sizes and multiplication implementations
● Performance measured in Gigaflops (GFLOPs)

Implementation Speedup vs Naive Approach 18

● Compares different matrix multiplication
implementations

● Speedup calculated relative to naive implementation
● Two GPU architectures: A100 and RTX 2080 Ti

Artifact Overview
05

20Repository Structure
GitHub Repo: https://github.com/mmjerge/cudatorch
Source Files:
● matrix_transpose.cu: Contains all transpose implementations
● matrix_multiplication.cu: Contains all multiplication implementations

Benchmarking:
● Cross-GPU architecture testing (RTX 2080 Ti, A100, H100)
● SLURM job scripts for running tests on multiple GPUs
● Automated verification against CPU reference implementation
● Performance metrics (throughput, execution time) exported to .csv files
● Visualization scripts for generating performance charts

Naive Implementations 21

22Transpose Key Implementation Highlight
Vectorized Transpose

● Uses float4 to load/store 4 elements at once,
effectively quadrupling memory bandwidth

● Performs transposition during initial data loading,
eliminating redundant data movements and reducing
shared memory traffic

● Combines coalesced global memory access with
padded shared memory layout to prevent bank
conflicts

Advanced Matrix Multiplication Libraries Example 23

● Utilizes NVIDIA's optimized BLAS
library for GPU-accelerated matrix
multiplication

● Performs C = α(A * B) + β(C)
● Key components:

1. Create cuBLAS handle
2. Specify matrix dimensions

(m, n, k)
3. Set scaling factors (α, β)
4. Call cublasSgemm() to

compute matrix product
5. Destroy handle to release

resources

Final Plan & Contributions
06

Plan for the Final Report
1. Complete final benchmark runs:

○ Perform multiple runs (100+) for better statistical representation
○ Attempt benchmarking on one additional GPU architecture (H100 if available)
○ Possibly test with larger matrix sizes

2. Analyze results, finalize figures, and finish drafting the report.

25

Individual Contributions

We collaborated on researching optimization techniques
● Afnan: Implemented and benchmarked matrix transpose kernels
● Michael: Implemented and benchmarked matrix multiplication kernels

For the final phase, we will collaborate on running remaining benchmarks and divide the report writing
equally, with each focusing on our respective matrix operations.

Conclusion & Questions
07

Questions

● What do our results suggest about the real-world applicability of each implementation?
Would certain implementations be better suited for specific application domains or
matrix shapes?

● How might specialized matrix multiplication algorithms revolve to better address the
growing performance gap between different GPU architectures at scale?

27Key Takeaways:
The dramatic performance differences between implementations (up to 8× speedup)
demonstrate that optimizing memory access patterns through techniques like vectorization and
coalescing is the primary driver of transpose performance.
Implementation strategy matters enormously - with some implementations (like CUTLASS)
actually performing better on the RTX GPU for smaller workloads, but Tensor Core
implementations consistently favoring the A100 GPU for large matrices.

THANK YOU

References:
[1] Colfax Research, "Matrix Transpose in CUTLASS," 2022. [Online]. Available:
https://research.colfax-intl.com/tutorial-matrix-transpose-in-cutlass/

[2] L. Mao, "CUDA Matrix Multiplication Optimization," Lei Mao's Blog, 2020. [Online]. Available:
https://leimao.github.io/article/CUDA-Matrix-Multiplication-Optimization/

[3] L. Mao, "CuTe Matrix Transpose," Lei Mao's Blog, 2022. [Online]. Available:
https://leimao.github.io/article/CuTe-Matrix-Transpose/#Introduction

[4] NVIDIA Developer Blog, "Using CUDA Warp-Level Primitives," 2021. [Online]. Available:
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

[5] NVIDIA, "CUTLASS CuTe Documentation," GitHub Repository, 2023. [Online]. Available:
https://github.com/NVIDIA/cutlass/tree/master/cute

