
Benchmarking Matrix Operations Optimizations
Afnan Alabdulwahab

Department of Data Science
University of Virginia
Charlottesville, USA
aa7dd@virginia.edu

Michael Jerge
Department of Computer Science

University of Virginia
Charlottesville, USA
mj6ux@virginia.edu

Abstract—This paper presents a comprehensive benchmarking
study of matrix operation optimizations across NVIDIA GPU
architectures, focusing on both transposition and multiplication.
We evaluate performance impacts of memory access patterns,
shared memory usage, and specialized hardware capabilities on
RTX 2080 Ti and A100 GPUs. For matrix transposition, our
vectorized implementation achieves up to 6× speedup over naive
approaches, reaching 1800 GB/s on the A100 with large matrices,
demonstrating the critical importance of coalesced memory
access. Meanwhile, matrix multiplication benefits substantially
from tensor core acceleration and library optimizations. Our
experiments across multiple matrix sizes, ranging from small
to large dimensions including non-square configurations, reveal
that implementation efficiency varies significantly with matrix
dimensions and hardware architecture. These findings provide
practical insights for selecting optimal implementations based
on specific workload characteristics, helping developers reduce
computation time in AI and scientific computing applications
where matrix operations dominate processing requirements.

Index Terms—Matrix Multiplication, Matrix Transpose, GPU
Optimization, CUDA Programming, Shared Memory, Tensor
Cores, CUTLASS, CuBLAS, Performance Benchmarking, Mem-
ory Bandwidth Utilization

I. INTRODUCTION

Matrix operations form the computational backbone of nu-
merous applications in scientific computing, machine learning,
computer graphics, and data analysis. These operations are
particularly fundamental to AI workloads, where they can
consume 70-90% of overall computation time. GPUs leverage
their parallel architecture to accelerate these operations, but
achieving optimal performance requires careful consideration
of hardware characteristics, memory access patterns, and al-
gorithmic design.

The optimization of matrix operations addresses several
critical needs in modern computing. Efficient implementations
directly reduce training time for machine learning models,
translating to lower computing costs and enabling larger
models to be trained within given resource constraints. As
model sizes continue to grow, optimized matrix operations
help maintain reasonable training and inference times through
algorithmic improvements, hardware acceleration, precision
reduction, and sparsity exploitation.

Profiling these implementations provides valuable insights
by identifying bottlenecks, measuring GPU utilization, guid-
ing hardware-specific tuning, and ensuring accuracy across
different optimization techniques. This paper examines the

performance characteristics of various matrix operation im-
plementations, focusing specifically on matrix transposition
and multiplication across different GPU architectures, offering
insights into when and where specific implementations excel.

II. RELATED WORK

Our work on matrix transpose optimization builds upon
significant prior research in GPU computing optimization
techniques.

Matrix transpose operations, due to their non-contiguous
memory access patterns, have been extensively studied for
performance optimization. Colfax Research provides a com-
prehensive tutorial on implementing efficient matrix transpose
in CUTLASS, with particular focus on tiled approaches and
memory access optimizations [1].

Custom implementations for matrix operations on GPUs
have been explored by Mao, who details both multiplication
optimizations [2] and transpose techniques using NVIDIA’s
CUDA Template Library (CuTe) [3]. These resources offer
insights into performance characteristics of different optimiza-
tion strategies across various matrix dimensions.

Our warp shuffle implementation leverages CUDA’s
register-to-register transfer capabilities as documented in
NVIDIA’s developer resources on warp-level primitives [4].
These primitives enable direct data transfer between threads
within a warp without using shared memory as an intermedi-
ary.

For our template-based implementations, we relied on
NVIDIA’s CUDA Template Library (CuTe) documentation [5],
which provides abstractions for tensor operations that simplify
development while maintaining performance optimizations.
The CuTe library offers layout-centric approaches to tensor
operations, enabling efficient memory access patterns for op-
erations like matrix transpose.

These resources collectively informed our implementation
choices, from basic approaches to sophisticated library-based
solutions, while guiding our methodology for performance
analysis and comparison.

III. BACKGROUND AND MOTIVATION

While matrix operations serve as fundamental building
blocks across computational domains as outlined in the intro-
duction, the specific challenges of optimizing these operations
on GPUs require deeper examination. This section focuses



on the technical barriers and optimization opportunities that
motivated our research.

Transformer architectures, which power modern language
models, rely heavily on multihead attention mechanisms that
create computational bottlenecks. These mechanisms involve
intricate sequences of matrix operations that must be optimized
holistically rather than in isolation.

Matrix transposition on GPUs presents unique implementa-
tion challenges beyond those of general matrix operations. The
fundamental mismatch between row-major storage format and
column-major access pattern during transposition creates non-
contiguous memory accesses that dramatically reduce cache
efficiency and effective memory bandwidth. This mismatch is
particularly problematic in GPU architectures, where memory
coalescing is critical for performance.

For matrix multiplication, the computational intensity
(O(n3) complexity) combined with data movement require-
ments creates a delicate balance between compute utilization
and memory bandwidth. The optimal implementation strategy
varies significantly across matrix dimensions and GPU archi-
tectures, making it impossible to identify a single approach
that performs optimally across all scenarios.

The current optimization landscape offers several ap-
proaches with varying performance characteristics. NVIDIA’s
cuBLAS and CUTLASS libraries provide highly tuned im-
plementations that work well for common use cases but
may not fully exploit hardware capabilities across all matrix
dimensions. Hardware features like Tensor Cores can dramat-
ically accelerate compatible operations but require specific
data formats and precision levels. Meanwhile, techniques
such as memory coalescing, shared memory utilization, and
vectorization offer significant performance improvements but
introduce implementation complexity.

Our evaluation of these optimizations across multiple GPU
architectures aims to bridge the gap between theoretical under-
standing and practical application, providing developers with
actionable insights for selecting optimal approaches based on
specific workload characteristics and hardware configurations.

IV. EXPERIMENTAL SETUP

This section details our testing methodology, hardware con-
figurations, and implementation details for both matrix trans-
pose and matrix multiplication operations. All experiments
were conducted on two different NVIDIA GPU architectures
to provide insights into how performance characteristics vary
across hardware generations.

A. Hardware Configuration

Our experiments were conducted on the following GPU
architectures:

• NVIDIA GeForce RTX 2080 Ti (Turing architecture,
11GB GDDR6 memory)

• NVIDIA A100-PCIe-40GB (Ampere architecture, 40GB
HBM2 memory)

We initially planned to include the NVIDIA H100 GPU in
our testing but were unable to secure access during the project
timeframe.

B. Matrix Transpose Setup

1) Matrix Dimensions: We tested transposition perfor-
mance using the following matrix sizes:

• Small matrices: 32×32 elements (1 KB)
• Medium matrices: 1024×1024 elements (4 MB)
• Large matrices: 8192×8192 elements (256 MB)
• Non-square matrices: 1024×2048 elements (8 MB)
2) Implementations Benchmarked: We implemented and

evaluated the following matrix transpose approaches, which
will be explained in detail in the next section:

Custom Implementations:
• Naive
• Shared Memory
• Swizzled
• Vectorized
• WarpShuffle
Library-based Implementations:
• cuBLAS
• CuTe (Naive, Shared, Swizzled variants)
3) Performance Metrics and Verification: For each matrix

transpose implementation, we measured kernel execution time
in milliseconds and calculated memory throughput in GB/s
using the formula 2×M×N×sizeof(float)

time(s)×109 , which accounts for both
reading and writing operations. We also analyzed bandwidth
utilization as a percentage of theoretical peak bandwidth
for each GPU to understand implementation efficiency. To
ensure correctness, all implementations were verified against
a CPU reference implementation, using complete element-by-
element verification for small and medium matrices, while
large matrices (8192×8192) underwent statistical verification
with more than 100 randomly sampled points to maintain
testing efficiency without compromising confidence in the
results.

C. Matrix Multiplication Setup

1) Matrix Dimensions: We tested multiplication perfor-
mance using the following matrix sizes:

• Small matrices: 32×32×32 elements (multiplication of
32×32 by 32×32)

• Medium matrices: 1024×1024×1024 elements (4 MB
per input matrix)

• Large matrices: 8192×8192×8192 elements (256 MB per
input matrix)

• Non-square matrices: 1024×2048×1024 elements (mul-
tiplication of 1024×2048 by 2048×1024)

2) Implementations Benchmarked: We implemented and
evaluated the following matrix multiplication approaches,
which will be explained in detail in the next section:

Custom Implementations:
• Naive
• Shared Memory



• Tensor Cores
Library-based Implementations:
• cuBLAS
• CUTLASS
• cuSPARSE (for sparse matrix multiplication)
3) Performance Metrics and Verification: For each matrix

multiplication implementation, we measured kernel execution
time in milliseconds and calculated computational throughput
in GFLOPs using the formula 2×M×N×K

time(s)×109 , where M, N, and
K represent the dimensions of the matrices being multiplied.
We also analyzed computational efficiency as a percentage
of theoretical peak performance for each GPU architecture.
For sparse implementations, we evaluated performance across
different matrix densities to understand the impact of sparsity
patterns.

To ensure correctness, all implementations were verified
against a CPU reference implementation using different tol-
erance levels: ε = 10−2 for standard implementations and
ε = 10−1 for Tensor Core implementations to account for
mixed-precision arithmetic. Similar to our transpose verifi-
cation approach, we employed complete element-by-element
verification for small and medium matrices, while large ma-
trices underwent statistical verification with random sampling
to balance testing efficiency and confidence in the results.

V. IMPLEMENTATION

This section details our implementation approach for ma-
trix operations, including the specific optimization techniques
employed and their theoretical advantages. All implementa-
tions were developed using CUDA C++ and compiled with
NVIDIA’s nvcc compiler using the appropriate architecture-
specific flags for optimal code generation. Due to space
constraints, we present only pseudocode representations of
key algorithms; complete implementation details, full source
code, and additional benchmarking utilities are available in our
public repository [8].

A. Matrix Transpose Implementations

Matrix transposition is fundamentally a memory-bound
operation that requires reshuffling data from row-major to
column-major order. The key challenge is that this access pat-
tern inherently causes non-contiguous memory access, which
can significantly impact performance due to poor cache uti-
lization and memory coalescing issues. We implemented seven
distinct approaches to address these challenges:

1) Naive Implementation: Our baseline implementation
performs a direct element-by-element copy from input to out-
put. Each thread is responsible for transposing a single element
by reading from global memory at position (row, col) and
writing to position (col, row). While simple to implement, this
approach suffers from uncoalesced memory access patterns
when writing to the output matrix, as threads within a warp
write to non-contiguous memory locations. This causes seri-
alized memory transactions and significantly reduces effective
memory bandwidth.

Algorithm 1 Naive Matrix Transpose
Input: Matrix A of size M×N, Output matrix B of size
N×M

1: for each thread (i,j) in parallel do do
2: row = blockIdx.y * blockDim.y + threadIdx.y
3: col = blockIdx.x * blockDim.x + threadIdx.x
4: if row < M and col < N then then
5: B[col][row] = A[row][col]
6: end if
7: end for

2) Shared Memory Implementation: To address the global
memory coalescing issues, we implemented a tiled approach
using shared memory as an intermediate buffer. The matrix
is divided into 32×32 tiles, and each thread block collabo-
ratively loads a tile into shared memory with coalesced read
operations, then writes back to global memory in a transposed
pattern. The critical element in this implementation is the
padding in the shared memory declaration (TILE SIZE+1),
which prevents bank conflicts during transposed access. This
implementation provides better memory coalescing for both
read and write operations to global memory, at the cost of
using shared memory resources.

3) Swizzled Implementation: The swizzled implementation
extends the shared memory approach by applying index
transformations to eliminate bank conflicts. Bank conflicts
occur when multiple threads access different addresses within
the same shared memory bank. By ”swizzling” the mapping
between thread indices and shared memory addresses, we
can distribute accesses across banks. The swizzling function
(a bitwise XOR operation with a shifted index) effectively
reorders memory access patterns to avoid bank conflicts. This
approach aims to maintain shared memory’s speed benefits
while eliminating the performance penalties of bank conflicts.

4) Vectorized Implementation: The vectorized implemen-
tation represents our most optimized custom approach, using
CUDA’s vector types (float4) to load and store four el-
ements at once, effectively quadrupling memory bandwidth
utilization. This implementation combines three key optimiza-
tions: (1) vectorized memory access through float4, (2)
early transposition during the load phase, and (3) padded
shared memory to prevent bank conflicts. By performing
the transposition as data is loaded into shared memory, we
eliminate redundant data movements and reduce shared mem-
ory traffic. Each thread processes four elements in parallel,
increasing computational throughput and improving memory
coalescing.



Algorithm 2 Vectorized Matrix Transpose
Input: Matrix A of size M×N, Output matrix B of size
N×M

1: Declare shared memory tile of size TILE SIZE ×
(TILE SIZE+1)

2: for each thread in parallel do do
3: Calculate input indices for vectorized access (row in,

col in)
4: Load 4 consecutive elements from A using float4 with

bounds checking
5: Store elements in shared memory with padding
6: Perform transpose-on-load by mapping (row, col) to

(col, row) in shared memory
7: end for
8: syncthreads()
9: for each thread in parallel do do

10: Calculate output indices for transposed access (row out,
col out)

11: Read 4 elements from transposed locations in shared
memory

12: Write 4 elements to matrix B with bounds checking
using vectorized access

13: end for

5) Warp Shuffle Implementation: The warp shuffle imple-
mentation uses CUDA’s shfl sync intrinsic to perform direct
register-to-register transfers within a warp, theoretically elim-
inating the need for shared memory. This approach enables
threads to read values from other threads’ registers, potentially
reducing memory traffic. However, this implementation has
limitations in parallelism as each warp processes only a 32×32
tile in serial fashion. While warp shuffle operations provide
fast register-to-register transfers, the overall design requires
careful consideration of warp-level synchronization and data
access patterns.

6) Library-Based Implementations: We also implemented
transposition using NVIDIA’s optimized libraries:

1. cuBLAS: We used the SGEAM operation from cuBLAS,
which performs generalized matrix addition but can be config-
ured to perform transposition. This implementation leverages
NVIDIA’s highly optimized library routines, which may in-
clude internal optimizations specific to each GPU architecture.

2. CuTe Implementations: We leveraged NVIDIA’s CUDA
Template Library (CuTe) for layout-centric tensor operations.
We implemented three variants using CuTe: naive, shared
memory, and swizzled approaches, all taking advantage of
CuTe’s layout abstractions to simplify development. CuTe pro-
vides high-level abstractions for tensor operations while still
enabling low-level optimizations through specialized layout
strategies.

The CuTe implementations follow similar structure but
with specific modifications for the naive, shared memory, and
swizzled variants, taking advantage of CuTe’s layout abstrac-
tions to simplify development while maintaining performance
optimizations.

Table I summarizes the key characteristics of each matrix
transpose implementation approach.

B. Matrix Multiplication Implementations
Matrix multiplication is computationally intensive with

O(n3) complexity for square matrices. Unlike transposition
which is primarily memory-bound, matrix multiplication bal-
ances computation and memory access patterns to achieve
optimal performance. We implemented several approaches to
explore this optimization space:

1) Naive Implementation: Our baseline implementation as-
signs one thread per output element. Each thread:

• Computes its position (row, col) in the output matrix
using blockIdx and threadIdx

• Initializes an accumulator variable to zero
• Loops through the corresponding row from matrix A and

column from matrix B
• Multiplies matching elements and accumulates the sum
• Writes the final sum to the output matrix
While straightforward, this implementation suffers from

poor memory access patterns. Each element in the input
matrices is accessed multiple times from global memory
without reuse, resulting in a very low computation-to-memory
ratio (approximately 1/4 flop/byte). Additionally, accessing
columns from matrix B creates uncoalesced memory trans-
actions, severely limiting effective memory bandwidth.

2) Shared Memory Implementation: To address the global
memory bottleneck, our shared memory implementation em-
ploys a tiled approach:

• Divides input matrices into tiles (typically 32×32 ele-
ments)

• Each thread block cooperatively loads tiles from both
matrices into shared memory

• Computation proceeds in stages, with each thread multi-
plying corresponding elements and accumulating results

• After processing all tiles along the reduction dimension,
threads write their accumulated results to the output
matrix

This tiled approach dramatically improves the computation-
to-memory ratio to approximately B/4 (flop/byte), where B
is the tile size. Each element is loaded from global memory
exactly once, then reused multiple times from fast shared
memory. The implementation also benefits from improved
memory coalescing for global memory accesses, as threads
within a block load contiguous memory locations when trans-
ferring data to shared memory.

3) Tensor Cores Implementation: For our most advanced
custom implementation, we leveraged NVIDIA’s specialized
Tensor Core hardware available in Turing, Ampere, and newer
architectures. This implementation:

• Uses the WMMA (Warp Matrix Multiply Accumulate)
API to access Tensor Core operations

• Works with mixed precision (FP16 inputs with FP32
accumulation)

• Organizes computation around fragments (matrices di-
vided into 16×16 submatrices)



TABLE I
SUMMARY OF MATRIX TRANSPOSE IMPLEMENTATION APPROACHES

Implementation Memory Access Data Type Shared Memory Key Optimization
Naive Non-coalesced float No None
Shared Memory Coalesced float Yes (32×33) Tiling
Swizzled Coalesced float Yes (32×32) Bank conflict avoidance
Vectorized Coalesced float4 Yes (32×33) Vector loads/stores
WarpShuffle Register transfer float No Direct register transfer

• Combines tiling techniques with hardware acceleration
The Tensor Cores implementation requires careful data

formatting, as the hardware expects specific matrix dimensions
and memory layouts. While this introduces additional com-
plexity, it enables substantial performance improvements by
offloading computation to specialized hardware units designed
specifically for matrix operations.

4) Library-Based Implementations: We also evaluated sev-
eral high-performance library implementations:

cuBLAS: NVIDIA’s Basic Linear Algebra Subroutines li-
brary provides highly optimized matrix operations through the
SGEMM function (Single-precision General Matrix Multiply).
We configured cuBLAS using:

• cublasSgemm for standard matrix multiplication
• Alpha and beta parameters set to 1.0 and 0.0 respectively

(C = A×B)
• Row-major memory layout with appropriate stride param-

eters
CUTLASS: The CUDA Templates for Linear Algebra Sub-

routines library offers flexible, high-performance templates for
matrix operations. We implemented two CUTLASS variants:

• Standard implementation using optimized SIMT kernels
• Tensor Core implementation using mixed-precision arith-

metic
Both CUTLASS implementations leverage template-based

optimization that generates architecture-specific code at com-
pile time, enabling excellent performance while maintaining
flexibility and customization options.

cuSPARSE: For sparse matrix multiplication, we utilized
NVIDIA’s cuSPARSE library, which specializes in sparse
matrix operations. Our implementation:

• Represents sparse matrices in CSR (Compressed Sparse
Row) format

• Uses the cusparseSpMM function for sparse matrix mul-
tiplication

• Tests performance across varying sparsity levels (50%,
75%, 90%, 95% sparsity)

The cuSPARSE implementation enables significant perfor-
mance improvements for matrices with high sparsity, where
traditional dense matrix multiplication would waste computa-
tion on zero elements.

C. Algorithm: Tensor Core Matrix Multiplication

Our Tensor Core implementation leverages NVIDIA’s spe-
cialized hardware units for accelerated matrix multiplication.
Below we outline the key steps of this implementation:

1) Setup and Configuration
• Define tile dimensions aligned with Tensor Core

requirements (16×16×16)
• Configure thread block structure with multiple

warps (typically 2×2 warp arrangement)
• Initialize accumulator values to zero

2) Tiled Computation Loop
• For each 16-element tile along the reduction dimen-

sion:
– Load input tiles from matrices A and B into

shared memory
– Synchronize threads to ensure all data is loaded
– Transfer data from shared memory to Tensor

Core fragments
– Perform matrix multiplication using mma_sync

operation
– Accumulate results with previous iterations

3) Result Storage
• Store accumulated results back to global memory

The implementation leverages several key optimizations:
• Mixed-precision computing: Uses half-precision (FP16)

inputs with single-precision (FP32) accumulation
• Fragment-based computation: Organizes data in frag-

ments that map directly to Tensor Core operations
• Two-level tiling: Employs both block-level and warp-

level tiling for efficient parallelism
• Shared memory staging: Reduces global memory ac-

cesses by using shared memory as an intermediate buffer
• Strategic synchronization: Ensures proper coordination

between loading and computation phases
This implementation achieves significantly higher perfor-

mance than conventional approaches but requires careful ad-
herence to hardware-specific constraints, including alignment
requirements and supported matrix dimensions.

VI. RESULTS

This section presents the performance analysis of our matrix
operations benchmark across multiple implementations and
GPU architectures. We examine execution time, throughput,
and scaling behavior for different matrix sizes, with particular
attention to the factors that drive performance differences.

A. Matrix Transpose Performance

1) Implementation Comparison: Our benchmarks reveal
dramatic performance differences among the matrix transpose
implementations. Figure 1 shows the throughput comparison



across all implementations for both the RTX 2080 Ti and A100
GPUs.

Fig. 1. Matrix transpose throughput (GB/s) comparison across implemen-
tations and GPU architectures. The Vectorized implementation dominates
performance on both platforms.

The Vectorized implementation clearly dominates perfor-
mance on both GPU architectures, achieving 623.7 GB/s on
the RTX 2080 Ti and 724.6 GB/s on the A100. This represents
approximately a 6× speedup over the naive approach, which
only attains 100-115 GB/s. The superior performance of the
Vectorized implementation can be attributed to its effective
use of CUDA’s float4 type to load and store four elements
simultaneously, effectively quadrupling memory bandwidth
utilization.

Among the custom implementations, the shared memory
approach shows moderate improvement over the naive imple-
mentation (approximately 2.1× speedup), demonstrating the
importance of coherent memory access patterns even with ba-
sic optimizations. Interestingly, the swizzled implementation,
despite its theoretical advantage in eliminating bank conflicts,
performs similarly to or slightly worse than the basic shared
memory implementation across both GPUs. This suggests that
the additional computational overhead of index transformation
may offset the potential benefits from reduced bank conflicts in
this particular workload. The WarpShuffle implementation un-
derperforms expectations despite leveraging direct register-to-
register transfers, likely due to warp synchronization overhead
and reduced parallel execution compared to other approaches.

The library-based implementations show varying perfor-
mance characteristics. The CuTe shared and swizzled variants
achieve strong performance (up to 408.6 GB/s on the A100),
though still significantly lower than our custom Vectorized
implementation. The cuBLAS implementation demonstrates
solid but not exceptional performance, reaching approximately
416.8 GB/s on the A100.

2) Matrix Size Scaling: Figure 2 illustrates how implemen-
tation performance scales with increasing matrix dimensions.
Several key observations emerge from the scaling analysis:

The Vectorized implementation shows the most dramatic
scaling improvement, reaching 1400 GB/s on the RTX 2080
Ti and 1800 GB/s on the A100 with the largest matrices

Fig. 2. Throughput scaling with matrix size on RTX 2080 Ti (top) and
A100 (bottom). Note the pronounced performance increase for Vectorized
implementation on large matrices.

(8192×8192). This represents approximately a 3.5-4× through-
put increase compared to medium-sized matrices (1024×1024),
where performance is around 500 GB/s on both GPUs.

All implementations demonstrate improved throughput as
matrix size increases, but with different scaling patterns. This
suggests that larger matrices provide better opportunities for
hiding memory latency and achieving higher occupancy on the
GPU.

The cuBLAS implementation exhibits unusual scaling be-
havior, with performance dipping significantly at medium
sizes (nearly to zero on the RTX 2080 Ti) before climbing
substantially for the largest matrices. This pattern suggests that
NVIDIA’s library might employ different algorithms based on
matrix dimensions.

Performance dips observed around 106 elements
(1024×1024) across multiple implementations likely indicate
cache boundary effects or changes in memory access patterns
as matrices exceed L2 cache capacity.

3) GPU Architecture Comparison: The A100 consistently
outperforms the RTX 2080 Ti across implementations, though
with varying degrees of improvement. Figure 3 shows the
A100’s speedup ratio over the RTX 2080 Ti for each
implementation. The performance advantage of the A100



Fig. 3. A100 speedup ratio compared to RTX 2080 Ti across implementations.

ranges from approximately 10-15% for several implemen-
tations (Naive, Swizzled, Vectorized, WarpShuffle) to over
110% for cuBLAS. The CuTe library-based implementations
show significant gains, with CuTe Shared achieving around
70% speedup and CuTe Swizzled approximately 60%. The
standard Shared memory implementation also benefits sub-
stantially from the A100, with approximately 60% better
performance compared to the RTX 2080 Ti.

The performance gap between the A100 and RTX 2080
Ti widens as matrix size increases, particularly for the Vec-
torized and cuBLAS implementations. This scaling advantage
aligns with the A100’s architectural improvements, including
enhanced memory bandwidth (1.6× higher theoretical band-
width than the RTX 2080 Ti) and more sophisticated caching
mechanisms.

4) Memory Bandwidth Utilization: Figure 4 presents a par-
ticularly insightful analysis of memory bandwidth utilization
versus achieved throughput.

Fig. 4. Memory bandwidth utilization vs. throughput for various implemen-
tations. Point size indicates matrix dimensions.

The A100’s Vectorized implementation achieves approxi-
mately 120% of theoretical bandwidth utilization for large
matrices, demonstrating effective use of cache hierarchies to

exceed nominal memory bandwidth. Several implementations
achieve over 100% theoretical bandwidth utilization through
effective cache usage, highlighting the importance of memory
access optimization.

The clear correlation between bandwidth utilization and
achieved throughput confirms that matrix transposition is
indeed memory-bound, with performance primarily limited
by how effectively an implementation can utilize available
memory bandwidth.

B. Matrix Multiplication Performance

1) Implementation Comparison: Our benchmarks reveal
significant performance variations among the matrix multipli-
cation implementations. Figure 5 shows the execution time
comparison across all implementations for both the RTX 2080
Ti and A100 GPUs.

Fig. 5. Matrix multiplication execution time (ms) across implementations
and matrix sizes on both GPU architectures. Note the logarithmic scale
highlighting performance differences spanning several orders of magnitude.

The execution time results demonstrate that library-based
implementations significantly outperform custom implemen-
tations for most matrix sizes. For large matrices (8192×8192),
the performance gap spans multiple orders of magnitude, with
the naive approach taking seconds compared to milliseconds
for optimized implementations.

Figure 6 illustrates the computational throughput achieved
by each implementation, measured in GFLOPs (billions of
floating-point operations per second).

The CUTLASS library implementation demonstrates excep-
tional performance, particularly on the RTX 2080 Ti where it
reaches over 10,000 GFLOPs for large matrices. The cuBLAS
implementation also delivers strong performance, with approx-
imately 1,000-4,000 GFLOPs depending on the matrix size
and GPU architecture. Among custom implementations, the
Tensor Cores approach significantly outperforms both Naive
and Shared Memory implementations, highlighting the sub-
stantial acceleration provided by specialized hardware units.

2) GPU Architecture Comparison: The performance com-
parison between the A100 and RTX 2080 Ti reveals complex
tradeoffs that depend on both implementation strategy and



Fig. 6. Matrix multiplication throughput (GFLOPs) across implementations
and matrix sizes. Higher bars indicate better performance, with library
implementations and Tensor Core variants achieving the highest throughput.

matrix dimensions. Figure 7 shows the throughput comparison
for different matrix sizes across both architectures.

For large matrices (8192×8192), the A100 demonstrates
superior performance for most implementations, with speedups
ranging from 1.5× to 2× over the RTX 2080 Ti. However,
for medium-sized matrices (1024×1024 and 1024×2048), the
RTX 2080 Ti surprisingly outperforms the A100 for certain
implementations, particularly cuBLAS. This counter-intuitive
result suggests that the RTX 2080 Ti’s architecture might be
better optimized for these specific workloads, possibly due to
differences in cache hierarchy, memory subsystem design, or
library tuning parameters.

For small matrices (32×32), both GPUs show relatively poor
performance across all implementations, indicating that these
operations are primarily limited by kernel launch overhead and
initialization costs rather than by computational capabilities.

3) Implementation Efficiency: Figure 8 illustrates the
speedup achieved by different implementations relative to the
naive approach.

The CUTLASS Tensor Cores implementation achieves the
most dramatic speedup, reaching approximately 1500× faster
than naive on the A100 for large matrices (8192×8192). The
standard CUTLASS implementation and cuBLAS also show
exceptional performance, with speedups of 1300× and 1200×
respectively.

For sparse matrix multiplication, our cuSPARSE benchmark
shows that performance improves significantly as sparsity
increases, with the sparse implementation outperforming dense
multiplication at approximately 90% sparsity. This crossover
point varies slightly with matrix size and GPU architecture,
occurring at lower sparsity levels for larger matrices.

The computational efficiency, measured as a percentage
of theoretical peak performance, varies significantly across
implementations. The library-based implementations (cuBLAS
and CUTLASS) achieve the highest efficiency, reaching ap-
proximately 60-70% of theoretical peak for medium-to-large
matrices on both GPU architectures. The Tensor Cores im-

Fig. 7. GPU throughput comparison for different matrix sizes and imple-
mentations. Results show that while A100 generally outperforms for large
matrices, RTX 2080 Ti shows superior performance for some medium-sized
workloads, particularly with cuBLAS.

plementation demonstrates good efficiency when matrix di-
mensions align well with the hardware’s specialized units but
experiences reduced efficiency for poorly aligned dimensions.

These results highlight that implementation strategy matters
enormously—with some implementations (like CUTLASS)
actually performing better on the RTX GPU for smaller
workloads, while Tensor Core implementations consistently
favor the A100 GPU for large matrices.

VII. CONCLUSION

This paper presented a benchmarking study of matrix trans-
pose and multiplication optimization strategies across modern
GPU architectures. For matrix transpose, we explored several
custom CUDA kernels alongside library-based solutions from
cuBLAS and CuTe. Our experiments revealed that memory



Fig. 8. Implementation speedup relative to naive approach across matrix sizes.
Note the dramatic performance improvements for large matrices, especially
with Tensor Core-accelerated implementations.

access optimization, particularly vectorized transposition using
float4 types and coalesced memory accesses, leads to
dramatic performance gains. The vectorized implementation
achieved up to a 6× speedup over naive baselines and reached
1800 GB/s throughput on the A100 GPU for large matrices,
demonstrating the critical role of memory hierarchy utilization.
Shared memory tiling offered moderate improvements, while
swizzling performed similarly to or slightly worse than basic
shared memory despite its theoretical advantages in eliminat-
ing bank conflicts. Warp shuffle techniques showed limited
effectiveness due to synchronization overhead.

For matrix multiplication, we observed that Tensor Core-
accelerated implementations provided substantial performance
benefits on the A100 GPU, especially for large matrices.
CUTLASS-based implementations, however, performed better
on the RTX 2080 Ti for smaller workloads, illustrating that
the optimal choice of optimization strategy depends heavily
on both matrix dimensions and hardware architecture. These
findings reinforce the importance of adaptive algorithm selec-
tion to maximize computational efficiency across diverse GPU
platforms and workload sizes.

ACKNOWLEDGMENT AND CONTRIBUTIONS

The authors would like to thank the CS6501: GPU Archi-
tectures course staff at the University of Virginia for their
guidance and support throughout this research project. The
source code for all implementations discussed in this paper is
available at https://github.com/mmjerge/cudatorch.

Individual Contributions

We collaborated on researching optimization techniques
for GPU matrix operations. Afnan Alabdulwahab focused on
implementing and optimizing matrix transpose kernels, along

with analyzing transpose performance characteristics across
different GPU architectures and matrix dimensions. Michael
Jerge focused on matrix multiplication implementations and
analyzing multiplication performance characteristics across
different GPU architectures and matrix dimensions. Both au-
thors collaborated on writing this report.

Challenges and Limitations

Access limitations prevented us from including H100 GPU
benchmarks, which would have provided valuable insights
into the latest architectural improvements. Our study would
benefit from performing multiple runs of each implementation
to obtain average performance metrics providing more sta-
tistically robust representations of throughput and execution
time. Additionally, testing a wider range of matrix sizes
beyond our current selection would offer more comprehensive
insights into how different implementations scale with varying
problem dimensions. Another limitation was our focus on
individual optimizations; future work should explore com-
bining multiple optimization techniques simultaneously (such
as vectorized access with swizzling, or tensor cores with
shared memory tiling) to potentially achieve multiplicative
performance gains. Furthermore, evaluating these implemen-
tations across diverse GPU workload categories—including
compute-bound, memory-bound, and latency-sensitive appli-
cations—would provide more holistic performance insights
relevant to real-world deployment scenarios. Future work
could address these limitations by expanding the hardware
platforms tested, implementing more rigorous statistical anal-
ysis methodologies, exploring a more granular spectrum of
matrix dimensions, and investigating the interplay between
different optimization techniques under varied computational
contexts.

REFERENCES

[1] Colfax Research, “Matrix Transpose in CUTLASS,”
2022. [Online]. Available: https://research.colfax-intl.com/
tutorial-matrix-transpose-in-cutlass/

[2] L. Mao, “CUDA Matrix Multiplication Optimization,” Lei Mao’s
Blog, 2020. [Online]. Available: https://leimao.github.io/article/
CUDA-Matrix-Multiplication-Optimization/

[3] L. Mao, “CuTe Matrix Transpose,” Lei Mao’s Blog, 2022. [On-
line]. Available: https://leimao.github.io/article/CuTe-Matrix-Transpose/
\#Introduction

[4] NVIDIA Developer Blog, “Using CUDA Warp-Level Primitives,”
2021. [Online]. Available: https://developer.nvidia.com/blog/
using-cuda-warp-level-primitives/

[5] NVIDIA, “CUTLASS CuTe Documentation,” GitHub Repository, 2023.
[Online]. Available: https://github.com/NVIDIA/cutlass/tree/master/cute

[6] Z. Li, “Matrix CUDA,” GitHub Repository, 2023. [Online]. Available:
https://github.com/lzhengchun/matrix-cuda

[7] S. Boehm, “SGEMM CUDA,” GitHub Repository, 2023. [Online].
Available: https://github.com/siboehm/SGEMM CUDA

[8] M. Jerge and A. Alabdulwahab, “CUDA Matrix Operations Benchmark-
ing,” GitHub Repository, 2023. [Online]. Available: https://github.com/
mmjerge/cudatorch


